270 research outputs found

    Comparing Nonparametric Bayesian Tree Priors for Clonal Reconstruction of Tumors

    Full text link
    Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor.Comment: Preprint of an article submitted for consideration in the Pacific Symposium on Biocomputing \c{opyright} 2015; World Scientific Publishing Co., Singapore, 2015; http://psb.stanford.edu

    RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins

    Get PDF
    RBPmotif web server (http://www.rnamotif.org) implements tools to identify binding preferences of RNA-binding proteins (RBPs). Given a set of sequences that are known to be bound and unbound by the RBP of interest, RBPmotif provides two types of analysis: (i) de novo motif finding when there is no a priori knowledge on RBP’s binding preferences and (ii) analysis of structure preferences when there is a previously identified sequence motif for the RBP. De novo motif finding is performed with the previously published RNAcontext algorithm that learns discriminative motif models to identify both sequence and structure preferences. The results of this analysis include the inferred binding preferences of the RBP and the added predictive value of incorporating structure preferences. Second type of analysis investigates whether the instances of the previously identified sequence motif are enriched in a particular structure context in bound sequences, relative to its instances in unbound sequences. On completion, the results page shows the comparison of structure contexts of the motif instances between bound and unbound sequences and an assessment of statistical significance of detected preferences. In summary, RBPmotif web server enables the concurrent analysis of sequence and structure preferences of RBPs through a user-friendly interface.No sponso

    Inferring clonal evolution of tumors from single nucleotide somatic mutations

    Get PDF
    High-throughput sequencing allows the detection and quantification of frequencies of somatic single nucleotide variants (SNV) in heterogeneous tumor cell populations. In some cases, the evolutionary history and population frequency of the subclonal lineages of tumor cells present in the sample can be reconstructed from these SNV frequency measurements. However, automated methods to do this reconstruction are not available and the conditions under which reconstruction is possible have not been described. We describe the conditions under which the evolutionary history can be uniquely reconstructed from SNV frequencies from single or multiple samples from the tumor population and we introduce a new statistical model, PhyloSub, that infers the phylogeny and genotype of the major subclonal lineages represented in the population of cancer cells. It uses a Bayesian nonparametric prior over trees that groups SNVs into major subclonal lineages and automatically estimates the number of lineages and their ancestry. We sample from the joint posterior distribution over trees to identify evolutionary histories and cell population frequencies that have the highest probability of generating the observed SNV frequency data. When multiple phylogenies are consistent with a given set of SNV frequencies, PhyloSub represents the uncertainty in the tumor phylogeny using a partial order plot. Experiments on a simulated dataset and two real datasets comprising tumor samples from acute myeloid leukemia and chronic lymphocytic leukemia patients demonstrate that PhyloSub can infer both linear (or chain) and branching lineages and its inferences are in good agreement with ground truth, where it is available

    BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles

    Get PDF
    BACKGROUND: Popular miRNA target prediction techniques use sequence features to determine the functional miRNA target sites. These techniques commonly ignore the cellular conditions in which miRNAs interact with their targets in vivo. Gene expression data are rich resources that can complement sequence features to take into account the context dependency of miRNAs. RESULTS: We introduce BayMiR, a new computational method, that predicts the functionality of potential miRNA target sites using the activity level of the miRNAs inferred from genome-wide mRNA expression profiles. We also found that mRNA expression variation can be used as another predictor of functional miRNA targets. We benchmarked BayMiR, the expression variation, Cometa, and the TargetScan “context scores” on two tasks: predicting independently validated miRNA targets and predicting the decrease in mRNA abundance in miRNA overexpression assays. BayMiR performed better than all other methods in both benchmarks and, surprisingly, the variation index performed better than Cometa and some individual determinants of the TargetScan context scores. Furthermore, BayMiR predicted miRNA target sets are more consistently annotated with GO and KEGG terms than similar sized random subsets of genes with conserved miRNA seed regions. BayMiR gives higher scores to target sites residing near the poly(A) tail which strongly favors mRNA degradation using poly(A) shortening. Our work also suggests that modeling multiplicative interactions among miRNAs is important to predict endogenous mRNA targets. CONCLUSIONS: We develop a new computational method for predicting the target mRNAs of miRNAs. BayMiR applies a large number of mRNA expression profiles and successfully identifies the mRNA targets and miRNA activities without using miRNA expression data. The BayMiR package is publicly available and can be readily applied to any mRNA expression data sets

    Estimating Dependency Structure as a Hidden Variable

    Get PDF
    This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors. We also show that the single tree classifier acts like an implicit feature selector, thus making the classification performance insensitive to irrelevant attributes. Experimental results demonstrate the excellent performance of the new model both in density estimation and in classification
    • …
    corecore